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Mobile health — the application of sensors, mobile apps, social 
media, and location-tracking technology to obtain data pertinent to well-
ness and disease diagnosis, prevention, and management — makes it 

theoretically possible to monitor and intervene whenever and wherever acute and 
chronic medical conditions occur. With 81% of North American adults owning a 
smartphone,1 this frontier could be reached in the foreseeable future in the United 
States and is particularly relevant to the management of chronic diseases. More 
than 40% of U.S. adults have two or more chronic conditions2 and chronic conditions 
now account for 71% of all U.S. health care spending,3 so the promise of mobile 
health is especially attractive.

Mobile health is at the swirling confluence of remote sensing, consumer-facing 
personal technologies, and artificial intelligence (AI). Data from smartphone applica-
tions (colloquially known as “apps”) and an ever-growing range of wearable and envi-
ronmental sensors can be processed with the use of machine learning and other 
AI techniques to support medical decision making. Here, I review the current state 
of sensing, digital biomarkers, and digital therapeutics (the use of online technolo-
gies in the treatment of behavioral and medical conditions); discuss the challenges of 
integrating mobile health into clinical care; and describe regulatory, business, and 
ethical issues confronting mobile health. I do not discuss sensors and apps intended 
solely for use by health care professionals in health care settings. Because mobile 
health is a nascent technology and rigorous evidence of clinical validity is generally 
lacking, rather than presenting a review of existing systems, I present an overview 
for practitioners and policy makers to understand key aspects of this rapidly evolv-
ing field (see video).

Sensor s

Passive Sensors

Of passive sensors, the smartphone is the most ubiquitous. It has a nine-axis in-
ertial motion sensor that tracks motion and position in three-dimensional space. 
A three-axis accelerometer measures acceleration in the x, y, and z axes; a three-axis 
gyroscope senses rotation around each axis; and a three-axis magnetometer com-
pensates for magnetic drift to maintain position accuracy. These sensors enable 
physics-based capabilities, such as detecting the number of steps that a person 
takes during a day. Most smartphones can also sense geographic position, atmo-
spheric pressure, ambient light, voice, and touchscreen pressure. Creative uses of 
these sensors and a built-in camera can turn the smartphone into a fall detector,4 
spirometer5 (by sensing air pressure on the microphone), or heart-rate sensor.6

Wearable devices are also widespread. In the United States in 2017, 17% of 
adults used a wearable device such as a smartwatch or a wrist-worn fitness band.7 
Wrist sensors have many of the same sensors as smartphones and can be used to 
detect motions such as those associated with smoking8 and seizure activity.9 Wrist 
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sensors often also have photoplethysmographic 
sensors, which measure heart rate and heart-rate 
variability by detecting changes in reflected light 
caused by changes in microvascular blood flow 
with each heartbeat. Two commercial devices 
with Food and Drug Administration (FDA) clear-
ance (see Glossary) can provide an electrocardio-
gram through electrodes embedded in a smart-
phone or smartwatch and thereby detect atrial 
fibrillation.4,10

Innovation in electronic sensing is in many 
ways outpacing the imagination for how these sen-
sors can be used clinically. Wearable sensor patch-

es can measure muscle activity and posture,11 
radiofrequency sensors placed over clothes can 
detect pulmonary edema,12 and smart fabrics can 
measure variations in force, pressure, humidity, 
and temperature13 to support, for example, neu-
rologic rehabilitation.14 A pill can be embedded 
with a miniature sensor that, when it enters the 
acidic environment of the stomach, emits a sig-
nal to a wearable sensor patch.15 This technology 
was approved by the FDA (see Glossary for defi-
nition of FDA approval) in 2017 for monitoring 
medication adherence.

Smartphones, wearable devices, and other pas-

Decentralized clinical trials: Trials executed through telemedicine, mobile health, or local health care providers, with 
the use of procedures such as virtual recruitment, investigational products shipped directly to participants, or 
smartphone-based outcomes assessment.

Digital biomarkers: Physiological and behavioral measures collected by means of digital devices such as portables, 
wearables, implantables, or digestibles that characterize, influence, or predict health-related outcomes.

Digital diagnostics: The application of wearable and ambient sensors, mobile apps, social media, and location-tracking 
technology singly or in combination to diagnose medical conditions.

Digital patient experience: The sum of online interactions that a patient has with a health care organization on web-
sites, mobile devices, or wearables across all touchpoints and phases of care.

Digital therapeutics: Interventions that use wearable and ambient sensors, mobile apps, social media, and location-
tracking technology independently or in conjunction with medications, devices, or other therapies to improve pa-
tient care and health outcomes.

Ecologic momentary assessment: An approach that involves repeated sampling of persons’ current behaviors and ex-
periences in real time, in these persons’ natural environments.

Food and Drug Administration (FDA) approval: FDA approval is given to class III medical devices that pass a premar-
ket approval process to “demonstrate that the device is safe and effective when used.” Class III medical devices are 
ones that pose the highest risk. They “sustain or support life, are implanted, or present potential high risk of illness 
or injury.”

FDA clearance: Class I or II medical devices pose minimal or moderate risk of harm. Unlike class III devices, they are 
not required to undergo premarket approval. FDA clearance can be obtained through the premarket notification,  
or 510(k), process to “demonstrate that the device is substantially equivalent to a device already placed into one  
of the three device classifications before it is marketed.”

Internet of Things: The network of everyday physical objects that are embedded with sensors and software that are inter-
connected and can exchange data through the Internet.

Medical device: According to the Food, Drug, and Cosmetic Act, a medical device is “an instrument … or other similar 
or related article [that is] intended for use in the diagnosis of disease or other conditions, or in the cure, mitigation, 
treatment, or prevention of disease … and which does not achieve any of its primary intended purposes through 
chemical action within or on the body … and which is not dependent upon being metabolized for the achievement 
of any of its primary intended purposes.”

Metadata: Data that describe and give information about other data — for example, the author of a document, the size 
of an image, or the device that generated a reading.

Mobile health: The application of wearable and ambient sensors, mobile apps, social media, and location-tracking 
technology singly or in combination to obtain data pertinent to wellness and disease diagnosis, prevention, and 
management.

Patient-generated health data: Health-related data that are created, recorded, or gathered by or from patients.

Patient-reported outcome: A report of the status of a patient’s health condition that comes directly from the patient.

Software as a medical device: Software that is intended to be used for medical purposes and that performs these pur-
poses without being part of a hardware medical device.

Glossary
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sive sensors are increasingly being networked 
together with sensors embedded in everyday ob-
jects, creating the so-called Internet of Things 
(Fig. 1). For example, commercially available smart 
homes that are embedded with motion and other 
sensors can record vital signs and monitor the 
physical activity (including falls) of elderly resi-
dents.16 In Chicago, the Array of Things project 
involves the use of 500 sensors to collect block-
level data on air pollution, noise, temperature, and 
pedestrian and vehicular traffic.17 These sensors 
can enable explorations of environmental influ-
ence on disease trajectories.

Active Sensing

Passive sensors collect observable data. Subjec-
tively perceived states of health (e.g., pain and 
other symptoms) are equally important for in-
forming patient-centered care and, at this time, 
can be captured only by asking the patient. Until 
recently, information about such outcomes has 
been obtained from questionnaires administered 
at intervals of weeks to months that ask patients 
to integrate their experiences during some past 
interval of time (e.g., “in the past 7 days, how 
often . . . ?”). The ubiquity of personal devices 
makes possible an alternative approach called 
ecologic momentary assessment (EMA) that is 
well suited to capturing some types of patient-
reported outcomes. EMA involves “repeated sam-
pling of subjects’ current behaviors and experi-
ences in real time, in subjects’ natural 
environments.”18 EMAs are less subject to recall 
bias than infrequently administered question-
naires and can be administered multiple times a 
day to capture short-term variations in responses. 
EMAs range from simple text-message prompts 
to short one- or two-item app-based questions 
and have been used to collect information on 
chronic pain,19 anxiety,20 substance-use disorders,21 
and many other conditions. Widely used in the 
social and behavioral sciences, EMA is an emerg-
ing method for outcomes assessment in both 
clinical care and clinical research. Newer image-
based EMAs, if designed with cultural sensitivity, 
offer intriguing opportunities for bridging lan-
guage, literacy, and numeracy barriers.

Functional Assessments

Functional assessments through sensors comple-
ment passive background sensing and active re-
ports by patients. Functional performance can be 
measured by having patients perform standard-

ized tasks using mobile health technologies. Ex-
amples include performance of the 6-minute walk 
test with the use of smartphone motion sensing,22 
assessment of parkinsonian voice tremor by means 
of the smartphone microphone,23 and assessment 
of cognitive function, such as memory and reac-
tion time, through apps.24 Although many mobile 
functional assessments are in development, data 
on broad clinical usefulness are lacking.

Digi ta l Biom a r k er s

Raw sensor data, such as from three-axis accel-
erometry, are meaningless to clinicians and pa-
tients. To be useful, raw sensor data must be pro-
cessed into digital biomarkers, defined as digitally 
collected physiological and behavioral measures 
that explain, influence, or predict health-related 
outcomes. Examples of digital biomarkers include 
a daily step count and average nightly sleep dura-
tion. The science of identifying and validating 
clinically meaningful and actionable biomarkers 
is in its infancy.25 To develop digital biomarkers, 
sensor engineers, computer scientists, data sci-
entists, clinicians, and clinical researchers need 
to work together to understand the nature of the 
clinical phenomenon being measured, match the 
appropriate sensors to the clinical need (while 
balancing technical concerns such as power con-
sumption and usability), derive candidate biomark-
ers by training machine-learning models, and 
conduct clinical studies to validate the biomark-
ers. Challenges include the handling of very high 
data volumes, high variability both within and 
across patients, and the need for repeated ongoing 
validation as the underlying sensors and algo-
rithms are updated.25

Digi ta l Ther a peu tics  
a nd Di agnos tics

Simply monitoring patient outcomes remotely gen-
erally does not by itself improve clinical out-
comes.26 Active interventions that use “digital 
therapeutics” are needed to directly prevent, man-
age, or treat medical conditions. Digital therapeu-
tics use mobile health methods alone or in com-
bination with medications and other therapies. 
For example, a growing body of evidence supports 
the use of digital cognitive behavioral therapy for 
patients with conditions such as insomnia,27 sub-
stance abuse,28 and attention deficit–hyperactivity 
disorder29 and of various reminder and behavioral 
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Figure 1. Data Flow of Wearable Sensors and the Internet of Things.

This figure presents a simplified view of the data flow of wearable sensors and the Internet of Things. The wrist sensor communicates 
with the patient’s smartphone through Bluetooth. Once on the phone, the data can be displayed in the app of that sensor or can be 
sent to the cloud storage of the sensor. This cloud “backend” stores data and can apply machine learning or other analytic techniques 
to generate predictions, visualizations, or decision support. The cloud output can then be displayed on a website that is accessible to 
patients, clinicians, or both. The ingestible sensor is activated in the stomach. It sends a low-energy signal to a patch on the patient’s 
chest. The patch communicates with the patient’s smartphone through Bluetooth. The rest of the data flow is similar to that of the 
wrist sensor. The smart thermostat and motion sensor are devices on the Internet of Things. These devices can communicate directly 
with the cloud or through a local network or intelligent gateways. Digital biomarker computation can happen in the sensor, smart-
phone, or cloud. In the cloud, data can be shared and combined with data from other devices and services for use by algorithms.
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management programs for patients with diabetes30 
and hypertension.30 Digital therapeutics that com-
bine hardware and software innovations include 
asthma management with the use of “smart” 
inhalers that track time, frequency, and location 
of inhaler use31; virtual-reality programs for pain 
management32; and treatment of panic disorder 
with the use of carbon dioxide monitors.33 Several 
such therapeutics are FDA-cleared34 or -approved,35 
and pharmaceutical companies are beginning to 
take stakes in digital therapeutics companies.36 
Digital diagnostics represent a farther frontier, 
with some showing early promise but all needing 
much wider, more rigorous, clinical testing. Ex-
amples of promising devices include those that 
can aid in the diagnosis of Parkinson’s disease 
(with data on posture and gait37 and voice23), au-
tism (with eye-gaze tracking38), and depression 
(with voice analysis39).

A major challenge of mobile health is the high 
drop-off rate in sensor and app usage.40 In one 
survey, more than half of users of activity track-
ers stopped using their device, and a third did so 
in the first 6 months.41 Strategies to improve en-
gagement include discussion between patient and 
provider of goals for tracking and clear plans for 
attaining them. Joint goal-setting followed by 
joint review of the data appears to motivate con-
tinued tracking and therapeutic engagement.42 
However, it is not clear, at present, whether 
enhanced patient–provider communication and 
shared decision making improves clinical out-
comes. Another driver of engagement is personal 
analytics that help patients understand and more 
effectively manage their own behaviors with re-
spect to disease pattern, such as the relationship 
of diet and activity to blood sugar. Although sen-
sors in the home and other locales may reduce 
the need for wearable sensors, patient engage-
ment is still required to install and maintain 
these environmental sensors, and continued en-
gagement will always be needed for active reports 
by patients.

In tegr ation w i th Clinic a l C a r e

At the front lines of care, two challenges domi-
nate the implementation of mobile health. The 
first is the vast quantity of data. Ancillary staff 
can help review and triage data, and visualization 
tools can mitigate the cognitive burden of inter-

preting the data. However, the most effective re-
sponse is to develop and show to clinicians only 
those digital biomarkers that inform clinical ac-
tion or clinical understanding (e.g., temporal 
and severity profiles of patient symptoms). Si-
multaneously, these biomarkers must be of suf-
ficient direct value to patients to justify their 
participation in the data-collection effort. None 
of this is easy. Greater investment in the science 
of digital biomarkers is needed to evaluate the 
value of mobile health data for clinical use.25

The second (and related) challenge is how the 
inclusion and presentation of data will fit into 
an already complicated and overstretched work-
flow. Clinicians cannot be expected to log in to 
separate websites for every sensor or app their 
patients are using. That said, integration with 
the electronic health record (EHR) is currently 
extremely challenging and costly.43 A recent de-
velopment may offer hope: the federal govern-
ment’s “meaningful use” requirements for EHR 
certification are calling for greater interopera-
bility through an emerging data-exchange 
standard called Fast Healthcare Interoperability 
Resources (FHIR).44 FHIR allows external third-
party apps to integrate into the EHR workflow. 
For example, Apple enables data to flow from 

Figure 2 (facing page). Integration of Sensor, Smart-
phone, and Electronic Health Record (EHR) Data for 
Patients and Clinicians.

Mobile health data are likely to be more useful if com-
bined with EHR data for patient or clinician use. Re-
cent technology is making this possible. In the Apple 
ecosystem, the Apple Health app can, for example, 
pull in data from a wrist sensor as well as EHR data 
from the patient’s health care institution or institu-
tions. The Android CommonHealth app aims to dupli-
cate this functionality for Android smartphones. Once 
sensor and EHR data are on a smartphone, they can 
be made available to other apps on the phone, com-
bined with data reported by patients, or sent up to a 
cloud to be computed into more aggregated digital 
biomarkers or used with machine learning to drive de-
cision support. The output — a visualization, digital 
therapeutic, or decision aid — can be delivered back 
to the patient through a smartphone. For clinicians 
using Fast Health Interoperability Resources (FHIR)–
enabled EHRs, the output (e.g., a sensor dashboard) 
can be provided directly within the clinical workflow 
through a window embedded within the EHR encoun-
ter for that patient. The clinician does not need to per-
form any additional logins. API denotes application 
programming interface.
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FHIR-enabled EHRs to the Apple Health app on 
iPhones and from there to other apps in the 
Apple ecosystem (Fig. 2). With this new ability 

to combine EHR and mobile health data, iOS 
mobile health apps may become more useful 
and effective. Absent an Android equivalent for 
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EHR access, Android apps may over time be-
come systematically less effective than iOS apps, 
which raises deep ethical concerns, as discussed 
below. A recently started open-source project 
called CommonHealth (https://commonhealth.org) 
aims to mitigate this concern by bringing EHR 
data integration to Android smartphones.

FHIR also supports integrating the output of 
third-party digital health tools directly into the 
EHR workflow without requiring that the output 
be written into the database of the EHR, since 
such a requirement would trigger often prohibitive 
legal and security concerns. With this SMART-on-
FHIR integration approach (SMART stands for 
Substitutable Medical Applications and Reusable 
Technologies),45 a clinician who is signed into the 
patient’s record can view that patient’s third-party 
app or sensor data in an embedded window with-
out the need for a separate log-in. This approach 
opens up the workflow and “screen real estate” 
of the EHR to essentially unlimited innovation. 
However, SMART-on-FHIR integration is currently 
very limited.

Health care organizations that wish to imple-
ment mobile health cannot overlook the logistics 
and legal implications of providing patients with 
sensors and apps. Additional staffing must be 
considered for assisting patients with technology 
setup, providing technical support, and respond-
ing to patients’ questions and concerns. For ex-
ample, the Ochsner Health System has assigned 
dedicated staff to act as “geniuses” in their O Bar, 
a retail-like space modeled after Apple’s Genius 
Bar that carries Ochsner-approved apps and de-
vices that patients can “test drive.”46 As patients 
independently bring mobile health data to clini-
cians (e.g., Apple Watch and Fitbit data) and as 
digital health vendors try to sell to health care 
organizations, health care leaders will need to 
grapple with how best to support mobile health 
and the use of patient-generated health data.47

O ther Ch a llenges

Validation and Regulation

Higher-risk mobile health technologies are con-
sidered medical devices under the Food, Drug, 
and Cosmetic Act. The FDA regulates medical 
devices under processes that were designed for 
medical-grade hardware devices, such as hip 
implants, with known physical properties that 

change little after market release.48 Mobile 
health technologies, in contrast, often combine 
hardware (e.g., a glucometer) with software 
(e.g., algorithms for the management of type 1 
diabetes) and can be extremely dynamic, with 
frequent hardware and software updates. A dif-
ferent regulatory approach is needed. The FDA 
proposes to regulate these technologies (now 
termed “software as a medical device”) through 
a new Digital Health Software Precertification 
Program.49 This “Pre-Cert” program, currently 
under pilot, proposes to precertify companies 
that demonstrate a “culture of quality and or-
ganizational excellence” for streamlined review 
of their applications. Products of precertified 
companies do not have to be associated with 
improved clinical outcomes before market re-
lease but will instead be subject to postmar-
keting performance monitoring to support 
the claims of safety and effectiveness by the 
company.

Many details of the program remain to be 
determined, including how companies can gain 
or lose precertification status, how different levels 
of risk of harm will be determined and handled, 
and how real-world performance will be assessed 
through postmarketing monitoring and with what 
consequences. Trust in mobile health technolo-
gies and the extent of their adoption will depend 
on how these and other details are resolved. Thus, 
the stakes for success of the Pre-Cert program are 
very high. The desire to support innovation must 
be balanced against grave concerns about insuf-
ficient or delayed oversight.

In addition to these technologies, the accuracy 
of digital biomarkers also requires validation. For 
example, commercial sensors are relatively con-
sistent with each other on step count but not on 
sleep duration or sleep cycles or duration of physi-
cal activity.50 Because most commercial devices 
restrict access to their raw data and algorithms, 
independent verification and validation of the 
majority of current digital biomarkers is not pos-
sible. Greater transparency and accountability, the 
setting of metadata standards (standards on how 
to describe data, such as their provenance), and 
external validation will facilitate evaluation of 
digital biomarkers proposed for use in clinical 
care.51,52 This can be achieved by making available 
reference data sets and through publication of 
tests of validation. An illustrative example is Sage 
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BioNetwork’s Parkinson’s Disease Digital Biomark-
er DREAM Challenge that made available data 
from studies of digital biomarkers of tremor and 
dyskinesia.53

Clinicians, patients, and payers would benefit 
from digital health formularies that list sensors 
and apps that are vetted for clinical use, much 
like medication formularies for drugs. The latest 
of several attempts to launch such a digital health 
formulary is by Express Scripts.54 Other efforts 
include the establishment of principles and guide-
lines for app development55 and rigorous evalua-
tion,56 but best practices for screening, integrat-
ing, and appraising apps remain to be established.

Market Growth and Clinical Value

Despite the regulatory flux, the digital health 
sector saw a record $8.1 billion in investments 
in 2018.57 A recent change in the Medicare Physi-
cian Fee Schedule that allows physician billing 
for time spent managing and interpreting data 
from remote monitoring (e.g., electrocardiograph-
ic, blood-pressure, and glucose monitoring) for 
management of chronic conditions58 provides an 
incentive for the use of mobile health data in the 
clinic. However, no standard models exist for who 
should pay for mobile health technology that is 
recommended or prescribed to patients.59 In clini-
cal research, decentralized clinical trials (see Glos-
sary) are using digital biomarkers as end points 
and replacing in-person study procedures with 
virtual and mobile procedures.52,60 ResearchKit 
by Apple61 and ResearchStack by Android62 — 
mobile research platforms that facilitate large-
scale virtual recruitment and outcomes assessment 
— are expanding the reach of clinical studies, 
analogous to the effect of mobile health on 
clinical care.

Underlying these market developments is a 
persistent question: to what end is mobile health? 
Tracking and reporting data are means to an 
end, not the end itself. Achieving clinical value, 
the ultimate goal, may occur through the use of 
mobile health data as cognitive aids to patients 
and clinicians (helping people understand or 
think through an issue), decision aids to patients 
and clinicians (helping people decide on an ac-
tion), or motivational aids for patient engagement 
and activation (Table 1). More collaboration is 
needed among clinicians, patients, and technol-
ogists to drive the development of clinically use-

ful mobile health technology and to imagine 
clinically useful applications of novel sensors, 
while remaining cognizant of potential harms. 
Clinical researchers need to develop new evalua-
tion approaches because years-long studies are 
poorly suited to the pace of change of mobile 
health technology. Finally, clearer demonstrations 
of the clinical and business value of mobile health 
will come when factors far beyond technology 
itself, such as integration into clinical workflow, 
payment model, and validation methods, are ad-
dressed in tandem with sensor and software de-
velopment.

Ethics

The tremendous promise of mobile health for 
transforming clinical care and research is tem-
pered by deep concerns about the effect of these 
technologies on equity, privacy, and patient auton-
omy. Although there is essentially no digital di-
vide according to race in the United States,67 
Internet and smartphone adoption is lower in 
lower-income, disabled, elderly, and rural popu-
lations. Moreover, Android users, who account 
for more than half of U.S. smartphone users,68 
have lower average income than iOS users.69 If iOS 
mobile health apps are systematically more ef-
fective than Android apps at improving health 
outcomes (e.g., owing to differential access to 
EHR data, as discussed above), health disparities 
will worsen. As health institutions increasingly 
develop a mobile presence with branded apps and 
other initiatives regarding digital patient experi-
ence (see Glossary), they must be careful not to 
increase health disparities — for example, by 
offering unequal services to iOS users and An-
droid users.

There is an even more profound digital divide. 
Use of mobile health and Internet of Things tech-
nologies requires digital literacy skills. Patients 
are essentially being asked to install and maintain 
their own medical devices and to be adept at man-
aging their own data deluge, a tall order when 
the majority of U.S. adults are in the lowest three 
of six proficiency levels for literacy and numera-
cy70 and more than 60% are in the lowest two of 
four proficiency levels for problem solving in 
technology-rich environments (defined as “using 
digital technology, communication tools, and 
networks to acquire and evaluate information, 
communicate with others, and perform practical 
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tasks”71). This gap is further compounded by the 
paucity of mobile health technologies in lan-
guages other than English.

With respect to privacy and autonomy, the 
potential threats are particularly worrisome. 
Mobile health technologies will increasingly 
connect to the Internet of Things, in which, like 
a “one-way mirror,”72 our virtual bodies and be-
havior will be visible on a grand scale for pur-
poses to which we have not directly consented. 
When personal health and nonhealth data com-
ingle in the cloud, companies and governments 
may access physiological biomarkers to monitor 

employee stress in the workplace, or marketers 
may offer us only certain products at differential 
prices based on our health history. Coupled with 
algorithms that are not in the public domain, 
these approaches could deliberately or inadver-
tently reinforce and entrench existing biases 
against disadvantaged groups, and incautious 
deployment of mobile health technology could 
potentially result in loss of privacy and autono-
my amounting to net harm to patients. Table 2 
lists actions that patients, practitioners, re-
searchers, and policymakers can take to guide 
the evolution of mobile health.

Mechanism and Examples Potential Benefits Potential Harms

Cognitive aid to patients†

Visualization of blood glucose level, diet, 
physical activity, and insulin use in one 
place in patients with type 1 diabetes63

Understanding of individualized responses  
of blood glucose level to diet and exercise

Confusion, misinterpretation

Cognitive aid to practitioners†

Visualization and summarization of home 
blood-pressure readings

Quick assessment of ambulatory blood-pres-
sure control without need to mentally es-
timate average home blood pressure 
from manual logs

Symptom profiles (e.g., from ecologic mo-
mentary assessments) that characterize 
patient experience

Window into patients’ lived experience to in-
form patient-centered care

Exacerbation of health disparities as prac-
titioners have less insight into health 
states of patients who are not willing  
or able to track themselves

Decision aid to patients‡

Reminders about medication adherence Improved medication adherence Reduction of medication nonadherence to  
a problem of forgetting,64 improving ad-
herence for business rather than clinical 
reasons

Decision aid to practitioners‡

Alerts triggered when a patient is using a 
smart inhaler above a specific threshold 
frequency

Treatment intensification earlier in course  
of disease progression

Inaccurate alerts, high volume of alerts, 
medical liability for ensuring real-time  
response

Motivational aid for patient engagement  
and activation

Patient tracking of chronic pain Data and graphing of subjective state validate 
patient experience, help improve engage-
ment with care providers42

Data-driven perfectionism (e.g., orthosomnia 
from sleep tracking)65

Adaptive goals and rewards for number  
of steps taken per day66

Individualized strategies for initiating and 
maintaining health behavior change

*  Mobile health can affect clinical outcomes through multiple mechanisms. Some mobile health solutions will use more than one of these 
mechanisms. Each mechanism also requires addressing multiple nontechnological factors (e.g., definition of when the intervention should 
be delivered and integration into clinical workflow). The rapid evolution of mobile health technology complicates the demonstration of bene-
fits and harms.

†  Cognitive aids help people understand or think through an issue.
‡  Decision aids help people decide on (and take) action.

Table 1. Mechanisms of Mobile Health and Potential Benefits and Harms.*
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Conclusions

Mobile health technologies are evolving from 
descriptive monitoring tools to digital diagnos-
tics and therapeutics that synergize tracking 
with behavioral and other interventions to di-
rectly affect health outcomes. Major challenges 
include the discovery and validation of meaning-
ful digital biomarkers, regulation of and pay-
ment for mobile health technologies, and their 
integration into frontline care. Clearer articula-
tions are needed of how mobile health technol-
ogy can concretely affect clinical outcomes, along 

with more rigorous evaluations of clinical effec-
tiveness.

Networked mobile health technologies have 
the potential to harm. Concerns about digital 
surveillance are not unique to mobile health,80 but 
health-related risks can be reduced through im-
proved digital literacy among patients, ethical 
codes of conduct for developers and regulators 
of mobile health, and transparency and account-
ability in how health care organizations adopt 
mobile health technology. The transformative 
potential of mobile health compels clinicians 
to take an active role in ensuring that this new 

An audio interview 
with Dr. Sim is 
available at  
NEJM.org

Stakeholder and Action Illustrative References

Patients and caregivers

Understand trade-offs in remote monitoring Consumer Reports guide to digital security and privacy73

Discuss with clinicians what data to track and why, to facilitate joint  
goal setting

Patient and doctor jointly define interventions and outcomes  
of interest for personalized N-of-1 studies42

Practitioners

Discuss with patients what data to track and why, to facilitate joint  
goal setting

Patient and doctor jointly define interventions and outcomes  
of interest for personalized N-of-1 studies42

Use patient-generated health data to facilitate doctor–patient commu-
nication, gain a more holistic sense of a patient’s health experience, 
and increase patient engagement and activation†

Use of observations of daily living74

Researchers and funders

Avoid exacerbating health disparities Minimization of selection bias in the development and testing  
of technologies75

Pursue, fund, train for, and support interdisciplinary science of digital 
biomarkers

Agenda for the development and evaluation of digital biomarkers25

Develop and use broader range of evaluation approaches Evaluation of mobile health technology76

Health care administrators

Address digital patient experience, with emphasis on trust, equity,  
privacy, security, and appropriate patient expectations

Recommendations on role of health information technology in 
addressing health disparities77

Support patient use of digital health technologies Ochsner Health System O Bar46

Choose best path toward piloting, deployment, validation, or adoption 
of digital health technologies

Digital health testing algorithm78

Policymakers and payers

Avoid increasing health disparities Recommendations on role of health information technology in 
addressing health disparities77

Ensure scientific rigor, transparency, accountability, equity, and adapt-
ability in mobile health regulation and policy

Agenda for the development and evaluation of digital biomark-
ers,25 FDA Digital Health Software Precertification Program49

Collaborate across institutions and vendors to achieve transparency,  
accountability, and validation

Health information technology innovation pipeline79

*  This table lists examples of actions that various stakeholders can take to guide the evolution of mobile health. No endorsement of the illus-
trative references is implied.

†  Patient-generated health data encompass both sensor data and data from patient reports.

Table 2. Actions for Stakeholders in Mobile Health.*
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frontier will be safe, fair, and just for all pa-
tients.

Disclosure forms provided by the author are available with the 
full text of this article at NEJM.org.
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